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0[ Introduction

As one of the e}orts for predicting transport phenom!
ena occurring during alloy solidi_cation\ Beckermann
and coworkers ð0\ 1Ł have recently developed a soph!
isticated micro!macroscopic model called the multiphase
model[ It seems to incorporate almost all of the micro!
scopic mechanisms present in dendritic solidi_cation\
such as back di}usion\ nucleation\ growth kinetics and
dendrite morphology[ Depending on the extent of the
simpli_cations\ various versions of the model equations
have been derived and successfully applied to selected
cases of interest ð1Ð3Ł[ Nevertheless\ this model still poses
an uncertainty associated with dendrite arm coarsening[

The aim of this note is to re_ne the solute di}usion
equation in the solid phase which is a key ingredient in
the micro!macroscopic model[ A new solute di}usion
model accounting for coarsening is proposed[ It is dis!
cussed formally in comparison with the multiphase
model\ and validated by comparing it with well!known
benchmark data as well as with an available numerical
solution[ In addition\ the e}ect of coarsening on the time
evolution of the local solid fraction along di}erent coo!
ling paths during dendritic solidi_cation is investigated
in order to show the utility of the present model[

1[ Problem de_nition

Basic concept\ detailed derivation procedure and fea!
tures of the multiphase model have already been pub!
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lished ð0\ 1\ 3Ł\ and thus are not repeated here[ Restricting
our attention to the present issue\ the volume!averaged
solute balance equation for a typical control "or aver!
aging# volume shown in Fig[ 0"a# was expressed as

d
dt

"rs`sCÞs# � rsCsi

d`s

dt
¦

rsDsS
ls

"Csi−CÞs# "0#

where ` denotes the volume fraction^ CÞ the average con!
centration^ D the mass di}usivity^ S the interfacial area

Fig[ 0[ Representative volume elements used for describing "a#
the macroscopic\ and "b# the microscopic solidi_cation
behaviors[
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concentration^ l the di}usion length[ The subscripts s and
l designate the solid and liquid phases\ respectively[ The
interfacial solid concentration Csi is related to the liquid
concentration as Csi � kpCl\ where kp is the equilibrium
partition coe.cient[ In deriving equation "0#\ solute
transport due to either di}usion or convection on the
macroscopic scale has been neglected[ It is observed that
S is the only term capable of re~ecting the e}ect of
coarsening in equation "0#[ Accordingly\ in the absence
of back di}usion\ i[e[ rsDsS:ls � 9\ the multiphase model
is unable to include the coarsening phenomenon\ which
motivates the present study[

Physically\ the coarsening of the secondary dendrite
arm spacings l1"t# a}ects the solute redistribution process
in two ways ð4Ł[ One is that it reduces the interfacial area
concentration of an averaging volume\ thereby making
the volume!averaged di}usive ~ux across the interface
"back di}usion# smaller[ The other is that it increases the
solid fraction compared with the case of a _xed arm
spacing at the same heat removal condition owing to the
less liquid volume to be solidi_ed[ In the multiphase
model\ the former is anyhow re~ected through the term
S\ whereas the latter is not explicitly[

For later use\ equation "0# is expressed in terms of
the microscopic length scales[ Assuming the well!mixed
interdendritic and extradendritic liquids "the separate
handling of them is not directly relevant to the present
issue#\ and setting the size of a microscopic volume
element as X"t# � l1"t#:1\ a simple one!dimensional
platelike secondary arm structure gives ð1Ł

S � 0:X[ "1#

For such a geometry with the parabolic concentration
pro_le in the solid ð5Ł\ the di}usion length ls is related to
the interface position s as ð1Ł

ls � s:2[ "2#

It is further assumed that the solid density rs is inde!
pendent of time "but may depend on the concentration#\
which is known to be valid for dilute alloys ð6Ł[ Then
equation "0# reduces to

d
dt

"`sCÞs# � Csi

d`s

dt
¦

2Ds

sX
"Csi−CÞs#[ "3#

2[ Modeling

It is desired that a new solute di}usion model not
only incorporates the coarsening rigorously\ but also is
suitable for coupling with the macroscopic heat ~ow cal!
culations[ To this end\ introduced is the postulate that
the solute di}usion characteristics of the macroscopic
control volume can be described\ in an average sense\ by
those of a representative microscopic volume element
"see the box in Fig[ 0"a##[ The volume element adopted

here di}ers substantially from that for the microscopic
conservation equation of each phase in the multiphase
model ð0\ 1Ł\ in that the present one consists of two phases
and expands with time[ This type of approach is not
new but has been commonly used in microsegregation
modelings ð5\ 7Ł[ Moreover\ the solute di}usion model
based on the above postulate has already been employed
in the micro!macroscopic analysis ð8Ł[

Referring to the enlarged plot of the microscopic vol!
ume element in Fig[ 0"b# and accepting the simpli_cations
used for deriving equation "3#\ the solute conservation in
the solid phase can be written as ð5\ 09Ł

d
dt

"sCÞs# � Csi

ds
dt

¦Ds

1Cs "s\ t#
1x

[ "4#

Application of the parabolic concentration pro_le in the
solid to equation "4# results in

d
dt

"sCÞs# � Csi

ds
dt

¦
2Ds

s
"Csi−CÞs#[ "5#

Despite the di}erences in concept and derivation\ equa!
tions "3# and "5# closely resemble each other in form[ In
order to verify the distinction between the multiphase
and the present models\ equation "5# is rewritten in terms
of the solid volume fraction which is de_ned by `s � s:X
as

d
dt

"`sCÞs# � Csi

d`s

dt
¦$

2Ds

sX
¦`s 0

0
X

dX
dt 1%"Csi−CÞs#[ "6#

On comparing equation "6# with equation "3#\ the only
di}erence is an additional term in the square bracket
which can be interpreted physically as the expansion rate
of the secondary dendrite arm spacing[ In actual cal!
culations the following form may be more convenient for
use instead of equation "6#]

dCÞs

dt
� $

0
`s

d`s

dt
¦

2Ds

`1
s X

1
¦0

0
X

dX
dt 1%"Csi−CÞs#[ "7#

Even in the absence of back di}usion "Ds � 9#\ the
coarsening e}ect survives via the volume!expansion!rate
term in equations "6# or "7#\ is contrary to equation "3#[
Note also that equation "6# degenerates to equation "3#
for the _xed arm spacing "i[e[ X"t# � constant#[ This
implies that the solute di}usion equation of the multi!
phase model is a subset of the present model[ Roughly
speaking\ the _rst and second terms inside the square
bracket in equation "6# correspond to the two afore!
mentioned e}ects of coarsening\ respectively[ It can be
asserted at this stage that the multiphase model accounts
for the coarsening e}ect only in part[

For evaluating the solid volume fraction `s and the
average solid concentration CÞs at the prescribed tem!
perature\ the overall solute balance for the two!phase
expanding volume element and the initial conditions are
needed\ i[e[
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rs

d
dt

"`sCÞs#¦rl

d
dt

"`sCl# � 9 "8#

`s � 9^ CÞs � Csi\ Cl � C9 at t � 9[ "09#

In consequence\ equations "6#Ð"09# constitute a set of
governing equations for the present solute di}usion
model in which the macroscopic solute transport is pre!
cluded[ Thermodynamic relations pertinent to the phase
equilibrium\ density dependence on the concentration
and coarsening of the secondary dendrite arms should be
supplemented for the closure of modeling[ The solid mass
fraction corresponding to the solid volume fraction is
calculated by

fs � rs`s:"rs`s¦rl`l#[ "00#

3[ Validation and application

The present model is validated by comparing the pre!
dicted eutectic volume fractions with the available data
for the well!known case^ directional solidi_cation of an
Al!3[8) Cu alloy[ Selection of this case is not only
because experimental data have been reported by Sarreal
and Abbaschian ð00Ł over a wide range of the cooling
rate\ but also because it is possible to discriminate the
e}ect of coarsening with the aid of a numerical simulation
ð01Ł[ Thermophysical properties\ phase equilibrium dia!
gram\ density model\ and coarsening model for this case
have been well documented[ For the consistency in com!
parison\ all the numerical data used in the calculation
were taken from those of the simulation ð01Ł[

Figure 1 shows the predicted eutectic volume fractions

Fig[ 1[ Comparison of the predicted eutectic volume fractions
by the present and the multiphase models with data from the
experiment and numerical simulation for the directional sol!
idi_cation of an AlÐCu alloy[

by both the present study and the multiphase model
without dendrite tip undercooling as a function of the
cooling rate\ together with the experimental data ð00Ł[
Two sets of the numerical results "with and without coars!
ening# ð01Ł are also depicted to complement the
discussion[ First\ all the predictions at the highest cooling
rate deviate considerably from the experiment[ The devi!
ations seem to originate from the e}ect of undercooling
in view of the work by Wang and Beckermann ð3Ł\ which\
however\ is out of scope of the present model[ It is also
observed that the present model as well as the numerical
simulation with coarsening agrees favorably with the
experimental data over most of the cooling rates[ On the
other hand\ predictions both from the multiphase model
and from the numerical simulation without coarsening
appreciably overpredict the data[ The volume!expansion!
rate term in equations "6# or "7#\ which is a unique feature
of the present model\ appears to be responsible for such
a discrepancy[ Although the present prediction nearly
coincides with the numerical simulation with coarsening\
the present model has an advantage of labor!saving in
that a set of simpli_ed ordinary di}erential equations
instead of full!scale partial di}erential equations ð01Ł are
solved[ This sort of facile character enables the present
model to _t the micro!macroscopic analysis of alloy
solidi_cation\ where excessive computations are faced
unavoidably ð2\ 8Ł\ as a microscopic component[

Analytical solutions to the solute di}usion problem
have been derived for a certain limiting case ð4\ 02Ł\
where back di}usion is absent\ the equilibrium partition
coe.cient is constant\ and the densities of the solid and
liquid are equal and constant[ Under the last condition\
the volume and mass fractions are identical\ i[e[ fs � `s[
One of the solutions is reproduced below ð02Ł

fs �
0

0−kp 00−
C9

Cl 1
−

kp

"0−kp#1

C−0:"0−kp#
l

X"t#

×g
t

9

X"t#Ckp:"0−kp#
l 00−

C9

Cl 1
dCl

dt
dt[ "01#

Note that the solution reduces to the well!known Scheil
equation\

fs � 0−"C9:Cl#0:"0−kp# "02#

only when the dendrite arm spacing is _xed[ In contrast\
the Scheil equation can be derived directly from the multi!
phase model without invoking the _xed arm spacing ð3Ł[
This is consistent with the foregoing discussion on the
coarsening e}ect[

It is an established fact that the actual solute redistri!
bution with _nite back di}usion depends strongly on the
local solidi_cation time "or cooling rate# ð09Ł\ as already
shown in Fig[ 1[ For the limiting case of zero back
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Fig[ 2[ Time evolutions of the solid mass fraction along di}erent
cooling paths during dendritic solidi_cation in the absence of
back di}usion] "a# with coarsening\ and "b# without coarsening[

di}usion\ it has long been recognized that the process is
independent of time or cooling pattern\ and thereupon
the Scheil equation has been commonly used for
evaluating the upper limit of microsegregation ð09\ 00Ł[
However\ this argument needs to be reassessed in view of
the time!dependent nature of coarsening ð4\ 01\ 02Ł[

As an application of the present model\ time evolution
of the solid fraction fs along di}erent cooling paths in the
absence of back di}usion is investigated[ In order to
focus on the e}ect of coarsening\ calculations have been
performed for a prescribed solidi_cation time "tf � 099 s
for all cases under consideration# using the same numeri!
cal data with those for Fig[ 1[ Figure 2 depicts variations
of the solid fraction during dendritic solidi_cation " from
the liquidus to the eutectic temperature# with and without
coarsening\ each for three cooling patterns] square root\
linear and quadratic temperature!time relations[ Since

the overall solidi_cation behaviors are controlled essen!
tially by the local temperature\ similar trends between
Figs 2"a# and "b# appear to be reasonable[ That is\ the fs
curve corresponding to each cooling pattern is distinct
from one another in both plots[ From the physical view!
point\ it is likely that all cases yield the same fs at the end
of dendritic solidi_cation\ because all the solute rejected
from the solid phase must pile up in the liquid phase
eventually[ In reality\ fs for each case of Fig[ 2"b#
coincides with one another\ whereas that of Fig[ 2"a#
does not[ This means that the dendritic growth back
di}usion also depends on the cooling path because of the
coarsening[ Therefore\ the di}erence in the _nal solid
fraction "or the eutectic fraction# between Figs 2"a# and
"b# can be interpreted as the net accumulated e}ect of
coarsening[

In order to show the e}ect of coarsening more clearly\
Fig[ 2 is replotted in the liquid concentrationÐsolid mass
fraction plane "Fig[ 3#\ which is normally termed the
microsegregation curve[ Interestingly\ all cases without
coarsening\ i[e[\ three cooling patterns in Fig[ 2"b#\ con!
verge into a single curve[ This can be deduced a priori
from the Scheil equation since it shows a unique relation
between the solid fraction and the liquid concentration[
On the contrary\ the microsegregation curves with
coarsening di}er from one another[ The values of fs with
coarsening at a _xed Cl:C9 are always larger than that
without coarsening[ Recall that similar di}erences in the
eutectic fraction has been observed in Fig[ 1[

Another important fact observable in Figs 2 or 3 is
that rapid cooling at the early stage of solidi_cation under
a _xed solidi_cation time\ e[g[ the dotted curve\ is e.cient

Fig[ 3[ Microsegregation curves corresponding to three cooling
paths in Fig[ 2"a# together with the case of _xed arm spacing in
the absence of back di}usion[
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for homogenizing the _nal composition of the alloy
microstructures[ Along such a cooling path solidi_cation
under the state of low temperature "or high interfacial
concentration# lasts longer while keeping nearly the same
value of the volumeÐexpansion!rate term compared with
other paths\ since X ½ tn "n ranges from 9[18Ð9[22
approximately# in the established coarsening models ð7Ł[
This causes an increase in the average solid concentration
ðsee equation "7#Ł[ The higher the average solid con!
centration\ the smaller the _nal eutectic fraction[

Since the evolution of latent heat predominates the
heat transfer on the macroscopic scale\ the coarsening
which a}ects the local solid fraction!temperature "or con!
centration# relation should be carefully taken into
account in the micro!macroscopic analysis of dendritic
alloy solidi_cation[ In view of the compactness and con!
sistency retained in the formulation\ the present solute
di}usion model is expected to be useful for such a
purpose[ The coupled micro!macroscopic analysis for a
conduction!dominated directional casting using the
present model as a microscopic component is under way[
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